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SOLVING A SPECIFIC THUE-MAHLER EQUATION 

N. TZANAKIS AND B. M. M. DE WEGER 

ABSTRACT. The diophantine equation x3 _ 3xy2 _y3 = ?3no 17 n l9n2 is com- 
pletely solved as follows. First, a large upper bound for the variables is obtained 
from the theory of linear forms in p-adic and real logarithms of algebraic num- 
bers. Then this bound is reduced to a manageable size by p-adic and real 
computational diophantine approximation, based on the L3-algorithm. Finally 
the complete list of solutions is found in a sieving process. The method is in 
principle applicable to any Thue-Mahler equation, as the authors will show in a 
forthcoming paper. 

1. INTRODUCTION 

Let f(X, Y) E Z[X, Y] be a binary form with at least three distinct linear 
factors over C. Let p1, ..., p, be fixed prime numbers. The diophantine 
equation 

S 

f(X, y) = pi 
i=1 

in the variables x, y E Z and n1, ..., ns E Z>0 with (x, y) = 1 is known as 
a 'Thue-Mahler equation.' It is well known that this equation has only finitely 
many solutions (Mahler), and that they can, at least in principle, be determined 
effectively, since an effectively computable upper bound for the variables can 
be derived from the p-adic theory of linear forms in logarithms (Baker, Coates, 
and Sprindiuk). For the history of the Thue-Mahler equation we refer to [3, 
Chapter 7]. 

In this paper we work out a paradigmatic example of determining all the 
solutions of a specific Thue-Mahler equation. In this way we hope to convince 
the reader that it is possible to solve any Thue-Mahler equation, not only in 
principle, but also in practice. We use the (real and p-adic) theory of linear 
forms in logarithms of algebraic numbers, for obtaining explicit but very large 
upper bounds for the unknowns. Then we reduce these bounds considerably 
by a combination of real and p-adic computational diophantine approximation 
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techniques based on the L 3-algorithm for reducing bases of lattices. For a 
survey of such techniques and examples, see [7], and for an outline of the 
general method for solving Thue-Mahler equations, see [6]. In a forthcoming 
publication we intend to give a general and detailed treatment, such as we did 
for the Thue equation (cf. [4]). Since the present paper is more or less a sequel 
to [4], we keep the same numbering of the constants cl, C2 .... 

From now on we concentrate on the following example. Let f(x, y) = 

x - 3xy - y . We study the equation 

( 1 ) : f(x, y) = 3n 017n 119n2 

in x,y E Z, no, n1, n2 E Z>0 with (xy) = 1. Note that 3, 17, and 19 are 
the only primes below 20 that occur as prime factors of f(x, y) for x, y E Z 
with (x, y) = 1. We were motivated to choose this Thue-Mahler equation as 
a paradigmatic example by the following facts: the cubic field generated by the 
roots of f (x, 1) = 0 is totally real, so that there are two fundamental units; 
this field is a Galois field and has class number 1, which saves us from some 
trouble; the number of primes pi is larger than one; and there are interestingly 
large solutions (the only other example of a Thue-Mahler equation that has 
been treated before by (a variant of) the method of this paper, involved only 
one fundamental unit and one prime (cf. [1])). 

Consider the transformation 

T(x, y) = (y, -(x + y)). 

It is straightforward to check that 

T2(x, y) = (-(x + y), x), T3 = id, 

f(X, y) = f(T(X, y)). 

Thus, every solution of (1) belongs to a class of six solutions: 

{+(x, y), +T(x, y), T2(x, y)}. 

These six solutions are distinct, and there is just one among them, (x, y) say, 
with x > 0, y > 0. 

2. THE CUBIC FIELD 

We work in the field K = Q(o), where i is defined by f(O, 1) = 0. K is a 
Galois field with class number 1 and discriminant 81 = 34 .The conjugates of 

2 2 2 
i are a(i) = 2 - i and a () =-2 - + i , where a generates the Galois 
group. 

The mappings T and a are related as follows. Put r(x, Y) = (XT' YT). 
Then, as can easily be checked, 

(2) O* (x Yo) XT YT 

Note that 6'K = Z[O] is the ring of integers of K, and that a system of funda- 
mental units of 6(K is given by {i, C} with I = 1 + i. Investigating how 3, 
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17, and 19 factorize into prime ideals of 6OK, we find that 3 is totally ramified, 
and that 17 and 19 split completely. In fact, we have: 

_________________ a(.) ~.C 2 N (.) 

-0 _ i-=2 _ 2 =? - =2_t9+0,2 1 

C= 1 + 0 _-1 = 3 - 2 I1 2 _ + 2 

2 ~~~~~~~~2 

2 ~~~~~~~2 a= 3_0 5+2 l-i_+2 19 
P = 3 + o 5 -_ 2 1 2_13 0 19 

V - + 6 -EMUI = 1 -I 2 -6- ?7VI = _3_ - + 62 
2 

bl7 v3 3 

3. FACTORING THE EQUATION IN THE FIELD 

Put /3 = x - yOi, where x, y is any solution of (1). Then 

N(fl) = +3fl 17fl119f2 

Suppose that a I (/3, a(/3)) for a prime a E 6K. Then a (,/ - r(fl)) = 
-y(b - a(o)). If a I y then, by y E Z, also N(a) I y. Also N(a) I N(fl) = 
f(x, y). Hence N(a) I x, and this contradicts (x, y) = 1. So it follows that 
a t y, and thus a I () - a(o)) = i2 . Therefore we may take a = W. If 

2 2 V' I /3, then 9 = N(q,) I N(/3) = f(x, y) . By considering f(x, y) (mod9), 
we find that 9 1 f(x, y) if and only if 3 1 x and 3 | y. By (x, y) = 1 it 
follows that V2 t ,B. Hence (/3, a(/3)) = (V/)fno for no e {O, l}, and other 
values for no in equation (1) are impossible. 

In view of the above discussion, equation (1) now yields 

(3) /3- ef= no vi 
(7T) laj(p) n2 

where e E K is a unit, and i, j E {O, 1, 2}. We claim that in (3) we may 
assume without loss of generality that i = 0, i.e., a'(r) = X . Applying a to 
(2) yields 

(4) -C7* a _xy&) = XT2-YT26. 

We apply a once to (3) if i = 2, and twice if i = 1 . Then (2) or (4) state that 
we find again an equation of type (3), with i = 0, with a /3 corresponding to a 
solution (x, y) that is in the same class of six solutions generated by +T, and 
with a somewhat different unit e. This proves our claim. 

h~~~~~ For a E K and h E {0, 1, 2} we will sometimes write ah instead of a (al). 
With this convention it suffices to solve 

(5) - = x _ Y = i 0 7rIPh2I1 
2 
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where no E {O, 1} and h E {O, 1, 2}, and where the variables are x, y E Z, 
n1, n2 E Zi_ and a, a2 E Z 

4. NOTATION 

For a rational prime p (in our case p = 17 or 19) we denote by Zp the 
ring of p-adic integers, by Qp the field of the p-adic numbers (the completion 
of Q under the p-adic metric), and by Cp the completion (under the p-adic 
metric) of the algebraic closure ?p of Qp . In general, if [Q(o): Q] = n and 
F(X) E Q[X] is the minimal polynomial of i over Q, there are n isomorphic 
embeddings pi (i = 1, ... , n) of Q(o) into Cp. For every Hi we have 

foi(a) = a if a E Q and F(~oi(6)) = 0. For simplicity in our notation we put 

pi(a) = a(i) for every a E Q(o) . If we work with more than one prime p, we 

will use the same notation a(i) , and it will be clear from the context with which 
prime p we are working. The above remarks remain valid for the 'infinite 
prime' p = 00. For this 'prime' the p-adic metric is the usual absolute value, 
and ?p = R, Cp = C. Finally, if E Qp and 4 has the p-adic expansion 

-m - 1 
2+ + -=UmP + *+** +0 1P + U2P + 

(0? < ?p < - 1, m > 0), 

we write = Um ... U_1UOU1U2 In particular, if E E Zp, we write 

O.UOu1U2***. 
We make the following convention for numbering the conjugates of i: 

in R inQ17 in Q19 

60) 1.879385241 ... 0.3 12 14 14 ... 0.16 3 5 10... 

6(2) -1.532088886 ... 0.10 12 5 8 ... 0.12 4 15 1... 

6(3) -0.3472963554... 0.4 9 13 10 ... 0.10 10 17 6... 

5. THE S-UNIT EQUATION 

We now return to equation (1), or rather to (5). Consider the three conjugate 
relations a'(/f) = x - ya'(6) . Eliminate x and y to obtain 

(6) (a A) 1 = dl 

where 

iS 1-0(i9) = _9l 
a 
O2(9)a?(9)= 
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We want to substitute (5) into (6). Put 

a2(r) 75 + 10i- 23& * 27r 1 52 - i - 13i2 

2(7) 127 a (7) 2 - 7 

a2(p) 3 - 4i +ll& * _ p _ 1 _14 + 13i + 72 

X a(p) 19 ' X a(p) a2(X) 19 

Using our knowledge on the action of a and a2 on i, Iand Vr, we obtain 
from (6) the following so-called 'S-unit equation': 

(7) I)a2 -nxn2Sal 1 = (- )al+a2+no *nlX *n20 2al +a2l I1 -a, +a2-no 

where 
al = al + 2a2 - no - 1, a2 = -2al - a2 + 1. 

Note that qi has disappeared, but no still occurs. 

6. BOUNDING THE P-ADIC ORDERS 

Now we work p-adically with a conveniently chosen prime ideal P over p, 
where p e {17, 19}. For p = 17 we take P = P17 = (7),and for p =19 we 
take p = p19 = (p) . Note that for both p 's we have ordg,(.) = ordp(.). From 

the definition of $' and X it is clear that ordP17 (4*) = 1, ordP 1 (X*) = 0, and, 
since O and i1 are units in &K, also ordP (i) = ordP1 (?1) = 0. Therefore, (7) 
immediately implies the relation 

(8) ni = ord, ((1l)a27n1Xn29ai a2 - 1). 

When p = 19, we apply to (7) the automorphism a _h and get 

(1)a2n _Xna' a'-1 = (-1)l+a2+no *n l*nf2 2al +a2-1 -ai+a -no 

Note that ordp (X*) = 1, while all other factors in the right-hand side have 

p19-adic order equal to zero. Therefore, 
)a~n n O, 7a (9) n2 = ord, ((-i)a2g %Xn2g iJ_ __ - 1) 

We put 

N = max{n1, n2}, A = max{IalI, la41}, H= max{A, N}. 

Then by 

a = (-a- 2a-n+ 1), a2= (2a + a+2n0+l), 

it follows that 

jaj1<A, 1a2l<A+lI 

with Ia21 = A + I only if a' = a = A and n0 = 1. We now can apply 
K. R. Yu's theorem (cf. [9]) to the right-hand sides of (8) and (9) in order to 
find upper bounds for them, which are of the form c13(logH + c14) (for the 
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precise formulation of Yu's theorem see the Appendix). We have calculated 
(see the Appendix) that in both cases we can take 

24 
c 3=6.190047 *10, c 4=4.28. 

Thus, from (8) and (9) it follows that 

( 0) N < c13(logH + c14). 

7. UPPER BOUNDS FOR ALL THE VARIABLES 

Inequality (10) will play an important role in computing an upper bound 
for H, a task which we undertake in this section. First we need the following 
lemma. 

Lemma 1. For the unit e = Oa, I a2 (appearing in the right-hand side of (7)) 
there exists an index k E {2, 3} such that 

either Je(k)I > eCl5A or Je(k)I < e-Cl5A 

where, as before, A = max{IaI, Ia'I}, and c15 = 0.572215. 

Proof. We have 

Slog 6 (2)l 8 log 16(2), log 11(2), Ka' 
( log I- ( log 1O(3)i log 11(3) J V a J 

from which we derive 
( al \-1( log 1 (3) - 2 

log 2 l (2)A 

a2 R log lo(2)g log 1,6 
where R (> 0.849287450) is the regulator of the field K. Computing approx- 
imately the elements of the matrix in the right-hand side, we obtain 

jall < 0.5023412151 log Je (2) 11 + 0.7429106861 log Je (3) 11, 

ja'j < 1.2452519011 logJe (2) 
11 + 0.5023412151 logJe (3) 

11. 

Let k E {2, 3} be such that I log Je(k)I I = maxf I log 1(3)11}. From 
the above inequalities it follows that 

A < 1.7475931161 log Je(k) I, 

i.e., 

I10g16(k)j > c 15A, 

from which the result follows. D 

We now take a positive constant c16 < Ic,5 (e.g., c16 = 0.085), and for our 
further study we distinguish three cases. In the first two of them. k will be the 
index defined by Lemma 1. 

Case 1. min1<i<3 I6l(i)6 > e-C16A and ,6(k)1 > eCl5A . We have I 
6l (k)1 Hi7k iflil = 

3% 1 7171 1 9n2 and then, in view of the first inequality above, 

( 1 1 ) 04(k) < 3no 1l7n l9n2e2cl6A 
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Then 
fl~~k)1 ~no n, 19 n 

eC15A 
(k 3 

___________ __ 
17 

1 9 2c16A 
I (k) Ino 17i(k) I nj I p(k) I n2 (k) | (k) p(k)| 

< 3.2266816 .5.0787257 ' - 12.94356302 f2e2c16A 

< eC,8+C,7N+2c,6A 

where c17 = 4.185659 and c18 = 1.1715. It follows that 

(12) (c15 - 2c16)A < c8 + c17N. 

Case 2. min1<i<3 i,6~') > eCl6A and 6(k)1 < eC15A Now 

e-clA > (k) l(k) > e-Cl6A 
e _ 18 1 I ,/k) Ino 17r(k) In, Ip(k) In2 > mnl I2 

-1A c 6 > e-(c18+cl7N+c16A) _ Fv-f F > 

where cl7 = 3.0962022 and c 8 = 0.93. Then 

(13) (c15 - c16)A < C18 + c17N. 
Before we proceed with- the third case, we show how in Cases 1 and 2 an 

upper bound for H follows. Combining (12) with (10) we get for Case 1: 

A <c19 + c20logH, 

where 
-C18 + C13C14C17 C13C17 

C15 -2c,6 C15 -2c,6 

On the other hand, by (13) and (10), on noting that c'7 < c7 and c18 < c8, 
we get the same for Case 2. Finally, (10) implies that N < c19 + C20 log H, and 
therefore in both Case 1 and Case 2 we have by the definition of H, 

H< c19 +c20logH, 

from which we easily get the following upper bound for H: 

(14) H<4.38*1027. 

Case 3. minl<i<3 If6(i)l < eCl6A. We put II6(1o)I = min <1<3 I6I. Then for 
any j :$ io (j e {1, 2, 3}) we have IYI I#(j) - O IW6') fl_(O)I < 2I16(j)I, 
from which 

-l 
W 

I > I min 2O(') - O(i) 1. 

Put (a(fl))(iO) = /3(j) and (a2(fl))(io) = fl(k) for io : i : k $ io. We have 

I1(i.0)fl(io)1(j)I < C e-C16A where 
21 

21= 1.7057371 > 1 minIO i-F- 
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Then, in view of (6), 

(15) |a0 (l - 1 < c2e c16H < 0.72542132, 
/3(j) 

2 

provided that H > 3. In particular, 3(io) f(k)/ f(i) > 0, and therefore 

(i'A) (i) a( } = - :(ii0 IX)I21l(o)Ii (i0 ) a) 2 A 
fl~~~j) C~AJ) j ~ IlhI 1 = 

where 

(16) A =n log )| + nlogU) I +a log I ('O) I + a' log I I() 

It is clear from (6) that AO :$ 0. Also, from (15) we have le AO- < 

0.72542132, from which we easily see that JAoJ < 1.7821e - 11 (namely, 
if lex - 11 < 3 < 1, then lxl < -(log(l - 6)/3)lex - 11). Thus, we finally get 

(17) 0 < JAoJ < 1.782c2,eC16H. 

By Waldschmidt's theorem (cf. [5]) positive constants c7 and c8 can be com- 
puted such that 

(18) 1A01 > e-c7(logH+c8) 

Using the version of this theorem as it is formulated in Appendix II of [4], we 
have computed the following values: 

C = 2.6467* 10 29, c8 = 2.442325. 

On combining (17) with (18) we get 

H < c7c8+log(l.782c21) + C7 logH 
C16 C16 

which implies the following upper bound for H in Case 3: 

(19) H<5.76*1032. 

Comparing this upper bound with that for Cases 1 and 2 (cf. (14)), we see that 
in any case (19) is true. 

8. REAL AND P-ADIC LINEAR FORMS IN LOGARITHMS 

In the forthcoming sections we show how the upper bound for H given in 
(19) can be reduced. First we transform equations (8) and (9) into equations 
involving linear forms in p-adic logarithms of numbers that are algebraic over 
Qp, with p = 17 and 19, respectively. We need a simple general lemma. 

Lemma 2. Ifz 7Zp, ordp(z- 1) > 1, and k EN with p k, then 

ordp(zk - 1) = ordp(z - 1). 
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The proof is an easy exercise, which we leave to the reader. We will also 
make use of the following 

Lemma3. Let z, ...ZM E Cp with ordp(zi-1)> 1/(p-1) (1I <i<m),and 
n , ... , nm E Cp with ordp(ni) > 0 (1 < i < m). Then the p-adic logarithms 

logp zi are defined for 1 < i < m, and 

ordp(z' *zm -1) = ordp(n, logp z, +* + n.logp z.) 

For a proof of this lemma, see [8, equation (1.2)]. 
Now we put 

A1 = nA1 + n2,j2+al/il+a212 (A = 1, 2 0), 

where 
(1) 16 (X ,16) 

= logl 17(4 ), 1 = og1017(x )h 

911 = 1og17(i,16 ), 12 = 1og17(l ), 

all in Q17 , 

A21 = log19( -h ) ' A22 = gl (1) 1 

6 )18 (1) 18 

[21 = logl9(i- )h' J22 = log19(1-h ), 

all in Q19, and 

A0 120 = log |^ ?)o |, 5 A0 = log IX (io) | (i)I5 0 lo I )1 

all in R. 
We now go back to (8) and apply Lemma 2 to 

I I 

Z = ()a2, 
(I) l()n26(,)a, (I)a2 Q 

Since ordp (.) = ord17(.) and ord17(a16 -1) > 1 for any a E K with ord,(&) = 

0, it follows from the above two lemmas that 

(20) n1 = ord17(A,). 

Analogously, working in Q19, we get from (9) 

(21) n2 = ord1g(A2) 

Summarizing, we now have the following situation: 
* first 

n1, n2 E Z>0, N= max{n, n2}, 
/ / 

a,' a' E Z 5 A = max{1aI I, IaI}, 2 1 
~~~~~~~~~2 

(22) H= max{A, N} < Ko = 5.76. 1032 

(cf. (19)); 
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* either 

(23) A < K1 + K2N, where K1 = 2.913 and K2= 10.4066 

(cf. (12) and (13)), 
or 

(24) 0 < IAOI < K3e K4H, where K3 = 3.04 > 1.782 . c22 

and K4 = 0.085 = C6 

(cf. (17)); 
* and finally 

(25) ord17(Al) = n, and ord19(A2)= n2 

9. THE p-ADIC REDUCTION STEP 

We start working in Q17. An easy computation shows that ord17(AQj) = 1 
and ord17(gu1) = 1 (j = 1, 2). We write 

ARll, and -1ij =a1 (1=1,2), 
12 12 

so that f1 a 2 E 
Z17o We choose a positive integer m such that 17m is of the size of K4 and 

m should be large enough. We denote by ,8(m) and a(m) the unique rational 
integers in the interval [0, 17m - 1] which are congruent (mod 17m) to /,B and 

Oj , respectively (j = 1, 2). Next, we consider the lattice Fm C Z4 generated 
by the column vectors of the matrix 

(1 0 0 
0 1 0 01 

JWM 0 0 1 ?| 
a(m) a(m) (m) 17 m 
a1 2 1 

i 

Using the L3-algorithm (cf. [2; 7, ?3.5] for an integer version), we computed 
a reduced basis {b1, ... , b4} of FM . Then every nonzero vector of FM has a 

length which is greater than or equal to 2 3/2bi I (cf. [2, Proposition (1.1 1)]), 
and we expect that this be of size det(FrM)1/4 - det(-WM)1/4 - 17m/4 which is 
of the size of Ko . 

Proposition 4. If Ib II > 25/2K0, then n, < m. 
Proof. Suppose that 

(26) n?>m+1. 

We claim that 

(27) a2 1 eIF 
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Indeed, I I 
a, ~~a, 

a2 _ m a2 

where 
(M)_ a2I2M) - nlm) + n2 

17m 
Then it suffices to show that A E Z, or, equivalently, that 

(28) ordi7(-alaji) ( ai) - nflfm) +n2) > m. 

By hypothesis, 

ord7( (m) -a) > m (j = 1, 2) and ord17(/J1 -/3)>m. 
Therefore, in order that (28) be true, it suffices that 

(29) ord 7(-alj& - a2 - nfl, + n2) > m. 

Note that -a'a1 - a>2 - nfl3 + n2 = Al//A12, which means that (29) is 
equivalent to ord17(Al) > m + ord17(AQ2) = m + 1 . But this is true, since in 
view of (26) and (25) ord17(Al) = n, > m + 1 . 

Now, (27) is proved, therefore we must have 

at2 + a12 + n2+ n2> 2-3lb2 a1 +2 +1+n22- b11, 
and a fortiori 4K8 > 2 V3IbI12, i.e., Ib11 < 25 2KO, which contradicts the as- 
sumption of the proposition. 5 

In our application of the above proposition we have chosen m = 110 or 
111, so that 17m is somewhat larger than Ko4 and we computed a reduced 
basis for the lattice Im (there are three possibilities for 'm, corresponding to 
h = 0, 1, 2; cf. (20)). Then we checked that lb, I > 25/2Ko, from which we 
concluded that n1 < 1 1 1 . 

In an analogous way we worked with the prime p = 19 in place of p = 17, 
and we concluded that n2 < 108. Thus we have found a new, small upper 
bound No = 111 for N = max{n1, n2}, instead of the large bound KO = 

32 -dcrdcinse. 5.76* 10 . This completes the 'p-adic reduction step.' 

10. THE REAL REDUCTION STEP 

Now, in view of (23) and (24) we have either 

(30) A < K1 +K2No < 1159 

or 
0 < JAoJ < K3e 

If the second alternative holds, then we apply the 'real reduction step,' as ex- 
plained below. Note that there are nine possibilities for AO, corresponding to 
the nine possibilities for (io h) E {1 , 2, 3} x {0, 1, 2}. 
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We choose a 'big' constant C of the size of K8 N8 (in our application we 
took C = 1075 or 1076 ), and we put 

fli. = [CA0j], aj = [Cyoj] (j = l, 2). 

Here, [x] = Lxi if x > 0, and [x] = Fxl if x < 0. Next, we consider the 
lattice F c Z4 generated by the column vectors of the matrix 

'[KOINO] 0 0 

9= O [KO/NO] 
0 a) 

0 01 f2 1 0 ' 

and we find by the L -algorithm a reduced basis {b1, ..., b4}. Then every 
nonzero vector of F has a length greater than or equal to 2312 lb1 l, and one 
expects that this be of the size of det(F)114 - det(,V)1N4 C 00 
which is of the size of K0. 

Proposition 5. If lb1 I > 23/2 4(K0 + N0)2 + 3Kg, then 

H < K-{logK3 + log C - log( Y3lb2 - 3K8 - 2(K0 + No))} 
4 

Proof. Consider the lattice point 

f1 n f [K0/NO]nl 

x = n2 - [K0/N0]n2 

where A. = n1!)1 +nj32+al2 * It is obvious that ,A- CAoI < 2NO +2KO, 
and therefore, also in view of (24), 

(31) JAI < CKe K4H + 2(No + Ko). 

On the other hand, we must have lxi > V3/2 lb1 I I, which is equivalent to 

[KoIN0]2 (n1+ n2) + a/2 + A2 > 2-3 lb 12. 
2 2~~~~~1 
2 2 2 2~~~~3K +2 ? 2b12, Since n1, n2 < N8 and la1l < K0, it then follows that 3K8 + A > 2 lb 

i.e., 

JAI > 2-3 lb 12 - 3K2 

(note that by hypothesis the argument of the square root is positive). Combine 
now the last inequality with (31) to get 

CK3e K4H> 231b112 - 3Ko - 2(No + K0), 

and the right-hand side is positive by hypothesis. Taking logarithms, we obtain 
the desired upper bound for H. o 
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Remark. In practice we estimate the reduced upper bound for H as follows: 
let , E 1R satisfy 6, < lb1l/Ko. Then, if the hypothesis of Proposition 5 is 
true, we have 

H < K(log K3 + log C -log Ko -log 62) X 
4 

where 2 < 2/8 - 3 - 2(1 + NO/KO). 
In our application with the chosen values for C, the hypothesis of Propo- 

sition 5 was checked to be true, and this implied H < 1169. Compare with 
N < 111 and (30) to get the new reduced upper bound H < 1169. This is 
extremely small indeed, compared to the initial upper bound (cf. (22)), but it is 
still quite large for practical application. Therefore, we applied once more the 
whole reduction process as described above, but now with Ko = 1169 and in 
the p-adic reduction step m = 14 for both p = 17 and p = 19. The p-adic 
reduction step gave 

(32) N < 14, 

and either (23) holds, in which case A < K1 + 14K2 < 149, or (24) holds, in 
which case we can apply the real reduction step with C = 10 or 1014, which 
yielded H < 296. Thus, max{lalI, la>11 < 296, and consequently 

(33) max{la,1, la21} < 297. 

Numerical details of all our computations can be obtained from the authors on 
request. 

11. THE FINAL SIEVE 

It remains to check for which values (no, n1, n2, a,, a2) satisfying (32) and 
(33) the coefficient of i2 in the right-hand side of (5) is 0. We have worked as 
follows. We have chosen a 'large' number such that the orders of i, a, it, and 
p modulo this number are 'small.' Such a number is 2701 = 37 73, and the 
orders of 0, a, 7r, and p (mod2701) are all equal to 72. Fix no E {0, 1} and 
h E {0, 1, 2} in (5), and check (by computer, of course) for which quadruples 

(n, , n ~~~2 2 
(n1, n2, al, a2) {E {O...., 14} x {O..., 71} 

the coefficient of 02 in the right-hand side of (5) is 0 (mod 2701). The number 
of such quadruples turned out to be between 450 and 500 (depending on no 
and h). Now, in the range determined by (32) and (33) we have only about 
4. 104 quadruples to check, instead of the initial 15 2(2 . 297 + 1)2 _ 7.96. 107. 
Choose a prime p $ 37, 73, and of the so selected quadruples keep only those 
for which the coefficient of 02 in the right-hand side of (5) is 0 (modp) . We 
did so for p = 601 and p = 541 (chosen at random), and were left with about 
14 quadruples (the exact number depending on no and h), which then could 
be checked further by straightforward computations. 

Note that this sieving process has to be applied six times: for no = 0, 1 and 
for h = 0, 1, 2. 
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12. CONCLUSION: THE COMPLETE LIST OF SOLUTIONS 

Now we have a complete proof of the following theorem, listing all the solu- 
tions of equation (1). 

Theorem A. The Thue-Mahler equation 

x -3xy2 - y3 = ?3n0 1 7nflh9n 2 

in x, y E Z and n0, n1, n2 E Z>O with (x, y) = 1 has exactly the 156 
solutions presented in Table 1 . 

TABLE 1 

The solutions of equation (1) 

no n1 n2 ?(X, y) 

0 0 0 (1,0) (0, -1) (1, -1) 

0 0 0 (2,1) (1,-3) (3, -2) 

0 0 1 (1, 2) (2, -3) (3, -1) 

0 0 2 (4, 5) (5, -9) (9, -4) 

0 1 0 (3,1) (1, -4) (4, -3) 

0 1 0 (3, 2) (2, -5) (5, -3) 

0 1 0 (15, 8) (8, -23) (23, -15) 

0 1 1 (1, 6) (6, -7) (7, -1) 

0 1 1 (3, 5) (5, -8) (8, -3) 

0 1 1 (28, 15) (15, -43) (43, -28) 

0 2 1 (59, 31) (31, -90) (90, -59) 

0 2 1 (31, 15) (15, -46) (46, -31) 

0 2 1 (18, 13) (13, -31) (31, -18) 

0 2 2 (206, 109) (109, -315) (315, -206) 

0 2 5 (896, 37) (37, -933) (933, -896) 

0 3 1 (97,54) (54,-151) (151,-97) 

1 0 0 (1, 1) (1,-2) (2, -1) 

1 0 1 (7, 4) (4, -11) (11, -7) 

1 0 1 (13, 7) (7, -20) (20, -13) 

1 0 1 (5, 2) (2, -7) (7, -5) 

1 1 0 (4, 1) (1,-5) (5, -4) 

1 1 1 (10, 1) (1, -11) (I1, -10) 

1 1 2 (29, 20) (20, -49) (49, -29) 

1 1 3 (73, 13) (13, -86) (86, -73) 

1 2 0 (4, 7) (7, -11) (11, -4) 

1 2 2 (712, 379) (379, -1091) (1091, -712) 
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In Table 1, one line represents a class of six solutions (cf. ? 1). In the column 
for ?(x, y) the three possible values for (x, y) with x > 0 are printed. 

APPENDIX 

The following theorem is a corollary to a recent theorem of K. R. Yu (cf. 
[9]). 

Theorem. Let a ,..., san (n > 2) be nonzero algebraic numbers, K - 

Q(a1, ... , an), [K Q] = d, and let p be a rational prime number. As usual, 

let i satisfy i2 =-1,and put co = (-1 + i)/2. Put 

(D5 
A) (d, 1) if(p>2andiEK) or(p=2andcoEK), 

(2d, 2) otherwise. 

Let p be a prime ideal of the ring of integers of K lying above p, and let 
fp be its residue class degree. For a E K, a $& 0, we denote by ord,(a) the 
order to which p divides the fractional ideal (a) generated by a, and we set 
ord, (O) = oc. Also, for a $& 0 we denote by h (a) the absolute logarithmic height 
of a (see, e.g., [5, ?2] or [4, Appendix II]), and we put loga = logI aI + iArg a, 
with -7c < Arga <7r . For any j E {1, ..., n} we put 

Vi~max~h~I)~logajl fIlogp Vj > max {h(aj) 27D' 

and V =max,<,<n Vi. Let b1, ... , bn E Z, and B = max{lb,1, ..., Ibnl4. If 

ord(aj) =O for all j= 1, ..., n and a,' * an 1, then 

ord(a .....an -1)<ClC2C3(logB + C4), 

where 
f 35009 *(45/2)n ifp 1 (mod 4), 

C1 = 3076025n ifp 3 (mod4), 
197142*36n ifp= 2, 

C2 = (n + l)2n+4p,5 (4 ,logp) (n+1)Dn+2 V. 

C _I log(2 l(n +1)2D2V) ifp > 2, 

3- log(3.2"(n + 1)2D2V) ifp = 2, 
C4 = 2logD. 

We can apply this theorem to the right-hand side of (8) as follows. Suppose 
that n1 > 1. Then 

ord (- a2,nl n2&alqa2 + 1) = 0, 
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and consequently 

n1 = ordp, Q<2ni 2n 2a' 2a' 
n, = rd P1 (~Xh 20) 1 q 2 _1). 

Analogously, we can do this with (9). Then we may apply the theorem with 
B = 2H, D = 6, (5 = 2, and n = 4. Thus, upper bounds for n1 and n2 can 
easily be found by means of this theorem as follows: 

I logp f 0.944405 if p = 17, 

d <0.981480 ifp=19, 

h(4) < 1.410173, 1 logc < 0.0371, hence VX = 1.410173, 
27rD 

h(Z) < 1.381873 Xogx < 0.032, hence V. = 1.381873, 
27rD 
logi)6 10.944405 if p= 17, 

h(i) < 0.352526, 2 D < 0.088, hence V,) = 
27rD ~~~~0.981480 if p= 19, 

h(q1) < 0.352526, l2g < 0.085, hence V = 0.94440 if 17 
27rD q~~~' 0.981480 if p = 19. 

Here, of course, V stands for ViJ. From these values we computed 

f 8.972424 109 if p = 17, f 3.134053. 1013 if p = 17, 
Ci- 10 C2= 1 3.487752.1013 

1.2015625 10 if p= 19, 3.487752 = 19, 

C3 = 14.77073, C4= 2log6. 

It follows that we can take for c13 and c14 (cf. (10)): 

c13= 6.190047 * 1024 > C1 C2C3, C14= 4.28 > 2 log 6 +log 2. 

Note that (10) is true also for N = 0. 

Addendum. After we had completed the present work, the following important 
papers appeared: 

J. Blass, A. M. W. Glass, D. K. Manski, D. B. Meronk, and R. P. Steiner, Con- 
stants for lower bounds for linear forms in the logarithms of algebraic numbers 
II. The homogeneous rational case, Acta Arith. 55 (1990), 15-22. 

Kunrui Yu, Linear forms in p-adic logarithms. II, Compositio Math. 74 
(1990), 15-113 (this is the paper announced in [9]). 

The results included in these papers improve on the results for c7 and c13, 
respectively, and thus would have given an upper bound for H that is consid- 
erably better than (19), although it still would have been very large. This would 
not have implied anything for our method, but it would have considerably re- 
duced the computation time. 
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